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Automatically generated orientation-location parts, or coordinate triplets

describing the geometric elements, differ frequently from the corresponding

parts of the symmetry-operation symbols listed in International Tables for

Crystallography [(1983), Vol. A, Space-Group Symmetry, edited by Th. Hahn.

Dordrecht: Reidel]. An effective algorithm enabling the derivation of standard

orientation-location parts from any symmetry matrix is described and

illustrated. The algorithm is based on a new concept alternative to the ‘invariant

points of reduced operation’. First, the geometric element that corresponds to a

given symmetry operation is oriented and located in a nearly convention free

manner. The application of the direction indices [uvw] or Miller indices (hkl)

gives a unique orientation provided the convention about the positive direction

is defined. The location is fixed by the specification of a unique point on the

geometric element, i.e. the point closest to the origin. Next, both results are

converted into the standard orientation-location form. The standardization step

can be incorporated into other existing methods of derivation of the symmetry-

operation symbols. A number of standardization examples are given.

1. Introduction

Volume A of International Tables for Crystallography edited

by Th. Hahn (referred to hereafter as ITA83) contains new

features describing space groups. Among them, a symmetry-

operation block is found. The block forms a link between the

algebraic way (coordinate triplets of general position) and the

geometric way (symmetry-elements diagram) of space-group

characterization. An entry in the block consists of a symmetry-

operation-type symbol, specification of glide/screw vector if

present, followed by ‘a coordinate triplet indicating the loca-

tion and orientation of the symmetry element which corre-

sponds to the symmetry operation’ (Hahn & Looijenga-Vos in

ITA83, 5th edition, p. 27), called here the orientation-location

part.1

The set of points defined by an orientation-location part is

considered as a geometric element. The idea of a geometric

element (GE) was introduced for precise definition of a

symmetry element and for assigning the symmetry operations

to the symmetry element (de Wolf et al., 1989). The symmetry-

operation symbols were recommended for general use in the

Report of the IUCr Ad hoc Committee on the Nomenclature

of Symmetry (de Wolf et al., 1992). Hence the symbols

contained in ITA83 became standard geometrical descriptions

of symmetry operations.

The procedure of deriving the symbol from the matrix form

of a symmetry operation described by Fischer & Koch in the

explanatory part of ITA83 is based on an earlier approach

developed by Wondratschek & Neubüser (1967). The type of

symmetry operation, the intrinsic translation and the inversion

point for a rotoinversion can be uniquely derived from the

symmetry matrix. In this classical approach, the orientation-

location part is obtained in one step by solving three simul-

taneous equations. In other methods, the solution is preceded

by determining the orientation of the given rotation axis

(Grosse-Kunstleve, 1999). In some cases, this information can

be used to describe a system of equations in a more convenient

coordinate system where one of the basis vectors is parallel to

the rotation axis (Shmueli, 1984).

As pointed out in literature on this subject (Fischer & Koch,

1983; Shmueli, 1984; Boisen & Gibbs, 1990; Hahn &

Wondratschek, 1994; Grosse-Kunstleve, 1999), the invariant

subspace of reduced operation is obtained by solving the

system of three simultaneous equations. Such a system is

undetermined and may be solved in many ways. However,

unique particular solutions can be obtained after applying

some algebraic conventions. The general rules relevant to all

systems have not been described so far. Consequently, stan-

dard symbols are frequently replaced by other geometric

1 The term ‘orientation-location part’ is preferred in comparison to the
commonly used term ‘location’ because it reflects two functions of the
coordinates which describe the geometric element of the operation.



information based on the authors’ own conventions (Shmueli,

1984; Grosse-Kunstleve, 1999).

The aim of this work is to describe the derivation of the

orientation-location parts from any symmetry matrix in an

algorithmic way. The emphasis on derivation of the standard

descriptions is greater than that found in literature elsewhere.

First, the orientation-location parts of symbols given in ITA83

are analysed and conventions which correspond to the applied

algebraic rules are defined. Then the final form of the orien-

tation-location parts are constructed in three steps: (i) deri-

vation and classification of the GE orientations, (ii)

determination of the unique point on the GE, i.e. the point

closest to the origin, (iii) transformation of the unique point

into the standard point for each type of GE orientation.

2. Analysis of the orientation-location parts of
geometric descriptions listed in ITA83

2.1. Conventions

The orientation-location part is interpreted as a parametric

equation of a line or a plane. With reference to the coordinate

system, the GE of rotation, screw rotation or rotoinversion is

described by the system of equations x = at + x0, y = bt + y0, z =

ct + z0 written in the abbreviated form as at + x0, bt + y0, ct + z0.

The geometrical significance of these equations is invariant

under dummy variable (parameter) t transformations: (i)

scaling of variable, t = kt (k > 0); (ii) inversion of variable, t =

�t; (iii) symbol change, t = x (or y or z); or (iv) origin shift, t =

t + t0. The plane of reflection or glide reflection is character-

ized in a similar way but with two dummy variables. The

algebraic conventions applied in derivation of the standard

orientation-location part correspond to the rules which fix

each of the above transformations.

For standardization purposes, the coefficients [a, b, c] are

relatively prime integers and the point x0, y0, z0 is character-

istic for the GE. The problem is that there are several char-

acteristic points (Fig. 1), namely, the set of one, two or three

special points (intersection of GE and basal planes or coor-

dinate axes), the point closest to the origin represented by the

position vector vShift, and the inversion point applicable only

to rotoinversion.

From the standard symbols printed in ITA83, a number of

conventions are derived. These rules are listed below in the

form of concise notation, where the symbol ‘’’ is used for
cyclic permutation and ‘�’, ‘+’, ‘0’, ‘n’, ‘*’ for negative,

positive, zero, non-zero and any value, respectively.

C1 (scaling): coefficients [a, b, c] should be scaled into

relatively prime integers.

C2 (positive sense): from the scaled pair [a, b, c] and

[�a,�b,�c], the selected one must fit the pattern [100]’,
[+n0]’, [+��]’ or [+++].

C3 (variable symbol): t = x for [n**], t = y for [0n*], t = z for

[00n].

C4 (variable origin for axis): the zero value of the dummy

variable corresponds to the point of intersection selected in

the order of descending priority: (*, *, 0), (0, *, *), (*, 0, *).

C5 (variable origin for plane): the zero value of the dummy

variables correspond to the point of intersection selected in

the order of descending priority: (*, 0, 0), (0, *, 0), (0, 0, *).

C6 (traces of the plane): the symbol for a reflection or glide

reflection defines two traces which span the plane. For a plane

in general orientation,2 the traces [mn0] and [p0r] are selected

for construction of the orientation-location part and the letter

z is used as the dummy-variable symbol for the second trace.

The conventions were tested by checking the consistency of

the descriptions in ITA83 (printed in 1995). They showed only

a few inconsistencies for the glide reflections (Stróż, 1997a,b),

corrected in the 5th edition of ITA83 (printed in 2002, pp. xix,

xx). Other, non-standard, geometric symbols differ in

convention C2 (Grosse-Kunstleve, 1999) or in conventions C4

and C5 (Shmueli, 1984).

It is evident that the above rules are dependent on the

orientation of geometric elements. In order to implement

them into an automatic procedure, it is reasonable to classify

the symmetry operations by their GE’s orientation in space.

2.2. The vector form of the orientation-rotation part

For further considerations, it is crucial to present a standard

orientation-location part in one of the following vector forms:

tvAxis þ vLocat �!
NORM

t½uvw� þ X0;

t1vTrace1 þ t2vTrace2 þ vLocat �!
NORM

t1½mno� þ t2½pqr� þ X0:
ð1Þ

The first expression in (1) defines a line and the second one

describes a plane spanned by two vectors, vTrace1 and vTrace2,

parallel to the intersections of the plane with the basal planes.

Let NORM symbolize the procedure which scales a vector

represented by the integer or rational numbers to the shortest

vector with the integer components. If necessary, the vector

sense is changed according to C2. This guarantees that the GE
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Figure 1
Characteristic points of geometric elements in general orientation. Point
vInv occurs only for rotoinversion. vShift corresponds to the point closest to
the origin O. vLocat terminates on the point conventionally chosen from
the set of special points. (a) The set contains the points of intersection of a
line with the basal planes. (b) The set contains the points of intersection
of the coordinate axes with a plane.

2 Conventions relevant to symmetry planes in general orientation cannot be
derived from the standard symbols (given in ITA83). This proposed extension
is applicable to non-conventional space-group settings.



orientation is described uniquely by the direction indices

[uvw] for an axis or by the pair of trace indices [mno] and [pqr]

for a plane. In the latter case, there are one or two zeroed

components in each trace description. Moreover, it is assumed

that standard point X0 represented by vLocat is selected in

accordance with C4 or C5. In non-standard descriptions, any

point on GE, e.g. the point closest to the origin, fixes the GE

location.

It may be of interest to compare the traditional inter-

pretation of the orientation-location parts with the one given

in (1). Classically, a coordinate triplet is treated in a more

algebraic way as a solution of an ‘invariant-points equation’.

As was pointed out earlier, even for symmetry operations

occurring in conventional space-group descriptions (ITA83),

the standardization of all solutions is difficult. In the present

approach, the orientation-location part is understood as a

geometric object composed of a point and one or two direction

indices. The explicit separation of orientation and location,

together with the following algorithmic considerations,

ensures that unique forms (1) and standard descriptions of the

coordinate triplets are obtained.

3. Orientation of a geometric element

3.1. A short review of existing approaches

The matrix-vector (W, w) form of symmetry operation

contains all the information required for a complete geo-

metrical characterization of the considered space-group

operation. Let R = det(W)W be a proper rotation matrix with

order n defined by equation Rn = I, where I is the identity

matrix. Each operation with n > 1 has a characteristic direction

vAxis, i.e. the eigenvector of the matrix R (e.g. Wondratschek &

Neubüser, 1967). A systematic solution of the eigenvalue

equation RvAxis = vAxis may be obtained by row echelon forms

(Grosse-Kunstleve, 1999). Another approach is based on the

matrix [P]1 = I +
Pn�1

i¼1 Wi for det(W) = 1 or [P]2 = I +

Pn�1
i¼1 ð�1ÞiWi for det(W) = �1, and the relation vAxis = [P]1v

for det(W) = 1 or vAxis = [P]2v for det(W) = �1, where v =

(1, 3, 5) (Shmueli, 1984). As the author has commented, the

matrix [P]1 was frequently used by Zachariasen (1967) and is

required for the decomposition of the translation part w into

its components along and normal to the axis (e.g. Fischer &

Koch, 1983).

3.2. Axis direction

Shmueli’s method of axis-direction calculation can be

somewhat simplified. The sum of the vectors symmetrically

distributed around the rotation axis, equivalent to [P]1v, can

be limited to only two or three such vectors. Moreover, one

can notice that the result of calculation is equal to a column of

the matrix if v is equal to a basis vector. Thus, any column of

[P]1 defines the zero vector or the vector parallel to the

rotation direction.

Let us construct the following matrix:

S ¼ ðIþ Rn=2
Þ; n ¼ 2; 4; 6;

S ¼ ðIþ Rþ R2Þ; n ¼ 3;
ð2Þ

similar to [P]1. If column S�j 6¼ 0, then the axis direction (or

direction perpendicular to the plane) is directly determined,

vAxis ¼ S�j; ð3Þ

and uniquely described,

½uvw� ¼ NORMðvAxisÞ: ð4Þ

Direction indices [uvw] are used in orientation-location parts

of rotations, screw rotations and rotoinversions.

3.3. Plane orientation

In the case of reflection [n = 2, det(W) = �1], the vector

vAxis or [uvw] should be transformed to the pair of traces. The

calculations are simple if the plane normal vAxis is referred to

the reciprocal-coordinate system

vPlane ¼ MvAxis; ð5Þ

where M is the metric tensor. The normalized vPlane,

ðhklÞ ¼ NORMðvPlaneÞ; ð6Þ

gives the plane orientation in the form of the Miller indices.

Three traces, i.e. the intersections of the (hkl) plane with the

basal planes, are represented by the vectors denoted by basal-

plane symbols:

Oxy ¼ ðk;�h; 0Þ;

Oyz ¼ ð0; l;�kÞ; ð7Þ

Ozx ¼ ð�l; 0; hÞ:

One normalized trace, selected according to Table 1, with

components m, n, o is denoted as vTrace1 and the second one

with components p, q, r as vTrace2.

All planes in Table 1, neglecting the (hkl) plane, define two

different traces. Each plane that corresponds to the reflection

or glide reflection is oriented by the unique Miller indices

or by a unique pair of traces (vTrace1, vTrace2). The last row in
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Table 1
Normalized traces for different types of plane orientation.

Miller indices
type

Trace Oxy
NORM (k, �h, 0)

Trace Oyz
NORM (0, l, �k)

Trace Ozx
NORM (�l, 0, h)

(100) vTrace1 = [010] [000] vTrace2 = [001]
(010) vTrace2 = [100] vTrace1 = [001] [000]
(001) [000] vTrace2 = [010] vTrace1 = [100]
(0kl) vTrace1 = [100] vTrace2 = [0qr] vTrace1 = [100]
(h0l) vTrace1 = [010] vTrace1 = [010] vTrace2 = [p0r]
(hk0) vTrace2 = [pq0] vTrace1 = [001] vTrace1 = [001]
(hkl) vTrace1 = [mn0] vTrace3 = [0tu] vTrace2 = [p0r]

Table 2
Normalized direction vectors for different types of axis/plane orienta-
tion.

Direction indices [100] [010] [001] [0vw] [u0w] [uv0] [uvw]
Orientation type 1 2 3 4 5 6 7
Miller indices (100) (010) (001) (0kl) (h0l) (hk0) (hkl)
Orientation type 8 9 10 11 12 13 14



Table 1 describes the case occurring only in non-conventional

settings of space groups and the pair of traces is selected

according to C6.

3.4. Classification of symmetry operations

To obtain standard orientation-rotation descriptions, it is

reasonable to divide rotations, screw rotations or rotoinver-

sions into seven orientation types according to the indices type

of the corresponding axis. Similarly, reflections or glide

reflections can be divided into seven types on the basis of the

Miller indices type of the corresponding plane (Table 2).

Hence symmetry operations are divided into 15 types

according to the orientation of their geometric elements,

where orientation type 0 is assigned to an inversion point and

means ‘no orientation’. Such a classification simplifies the

incorporation of conventions (especially C4 and C5) into the

derivation procedure and justifies the corresponding orienta-

tion-rotation parts classification.

4. Fixing a geometric element by the unique location
point

4.1. Splitting the translation part

Decomposition of the translation vector w into intrinsic and

location-dependent components (w = wg + wL) is given

separately in all cited references. The alternative calculation

can be based on the matrix S defined in (2):

wg ¼ Sw=2 for n ¼ 2; 4; 6; wg ¼ Sw=3 for n ¼ 3

and wL ¼ w� wg: ð8Þ

The component wg in (8) is parallel to the rotation axis of the

operation det(W)W. This direction in the case of reflections

[n = 2, det(W) = �1] is normal to the reflection plane of the

original symmetry operation W and hence the standard

meaning of symbols wL and wg is retained after their inter-

change.

Unlike the ‘classical’ approaches, splitting the translation

part (8) is also relevant to rotoinversions. The location-

dependent component allows for the location of all geo-

metrical elements in a similar way. wg relates the point on the

rotation axis closest to the origin to the inversion point [see

equation (11)]. Thus it is not necessary to solve the determi-

nate equation (W, w)vInv = vInv, where vInv denotes the inver-

sion point.

4.2. Existing approaches to GE fixing

As mentioned in all references, when dealing with symbols

of symmetry operations, any particular solution of the inde-

terminate equation

Wxþ wL ¼ x ð9Þ

defines a point on the geometric element and thus fixes its

location in space. A typical solution can be found by zeroing

the free variable(s) and by solving the system (e.g. Fischer &

Koch, 1983). Without additional conventions like C4, C5 (or

C6 in the case of the non-standard setting of a space group),

one can obtain two or three valid solutions. The selected

solution used in standard operation symbols is called here the

standard location point and denoted by vLocat(x0, y0, z0).

Another method is the transformation of (9) to such a

coordinate system that one of its basis vectors is parallel to the

vAxis. Then the new system is solved and the result is trans-

formed back to the original system (Shmueli, 1984). This

method is algorithmically complicated, especially in non-

standard settings of space groups.

A general approach, avoiding the special treatment

mentioned above, was proposed by Grosse-Kunstleve (1999).

Equation (9) rearranged to the form (I �W)x = wL gives the

solution vShift = x = (I �W)+wL, where (I �W)+ is the

pseudoinverse of (I �W). In practice, calculation of (I �W)+

is not easy. The application of the matrix pseudoinverse gives a

unique result which corresponds to the solution of determi-

nate equation(s) in the subspace obtained by orthogonal

projection of the original space (Stoer & Bulirsch, 1983).

4.3. New approach to the fixing problem

The projection concept together with the specific features of

matrices W are used for construction of relations similar to

equation vShift = (I �W)+wL.

First, the projection subspaces, i.e. the orthogonal comple-

ments of the GE subspaces are defined (Table 3).

Next, the general relation Pr(WvShift + w) = vShift is

rewritten into the form of (9):

PrðWvShiftÞ þ wL ¼ vShift; ð10Þ

where Pr denotes the orthogonal projection according to

Table 3. For considered projections, a necessary condition for

W to be retained as symmetry operation in projection

subspace (Hahn & Wondratschek, 1994) is fulfilled. Details
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Table 3
Projection subspaces corresponding to geometric elements.

GE
subspace

Dim.
of GE Projection subspace

Dim. of
subspace

Point 0 Whole space 3
Line 1 Points on plane perpendicular to the GE

through origin
2

Plane 2 Points on line perpendicular to the GE
through origin

1

Table 4
The formulae for calculation of vector vShift from component wL.

For simplicity, wk stands for wL + WwL.

Det(W)n vShift

�1 w/2
2, �2 (m) wL/2
3, �6 (wL + wk)/3
�3 WwL

4, �4 wk/2
6 wk



concerning the geometry of projections were described by

Buerger (1965).

In each subspace, there is only one point s1, s2, s3 repre-

sented by the location vector vShift. It characterizes the

shortest vector which starts at the coordinate-system origin

and terminates at the GE. vShift is unique with a precise

geometric meaning and is characteristic for all geometric

elements. Such a non-standard point is called the unique

location point. Calculation of vShift for a GE in the form of a

plane or a point is trivial. For a GE in the form of a line,

equation (10) also has an algebraic solution (Table 4).

Projection of a rotation, rotoinversion or screw rotation

corresponds to the rotation by the angle from the set �2�/k

(k = 2, 3, 4, 6) around the rotation point on the projection

plane. Translation wL in conjunction with rotation shifts the

rotation point from the origin to the invariant point vShift. For

acceptable rotation angles of the symmetry operations, simple

relations between wL and vShift exist and their corresponding

formulae can be obtained in a geometric way (see Appendix

A).

Thus every geometric element is fixed by its unique location

point, the point closest to the origin. Such a point also occurs

in some geometrical descriptions obtained by Shmueli. It

frequently differs from the standard location point applied in

standard descriptions.

In the case of rotoinversions [n > 2, det(W) = �1], the

orientation-location part is followed by the specification of the

inversion point vInv, which is directly related to vShift:

vInv ¼ vShift þ wg=2: ð11Þ

5. Standard orientation-location forms

5.1. Composing the standard symbol

In order to obtain standard description of an orientation-

location part, the unique location vector must be transformed

into the standard location vector. This is achieved by shifting

the origin of the dummy variable(s) in (1). For example, in the

case of a rotation axis, if the jth component of vLocat is zeroed

then

vLocatðiÞ ¼ vShiftðiÞ � vShiftð jÞ=vAxisð jÞvAxisðiÞ; for i ¼ 1; 2; 3:

ð12Þ

Derivation of vLocat for the planes is performed similarly.

Transformation formulae for different orientation types of

GE, corresponding to conventions C4, C5 and C6, have been

derived.

In Table 5, standard forms of orientation-location parts,

including the proposed symbol for a plane in general orien-

tation, are compiled. The standard forms are composed of the

orientation specification based on conventions C1, C2, C3 and

of the coordinates of the standard location point. The trans-

formation formulae vShift ) vLocat are given in columns 3, 4

and 5 and depend on the orientation type of the geometric

element.

The last column of Table 5 lists all the templates of standard

orientation-rotation parts including the proposed one. The

outlined algorithmic approach transforms any symmetry

matrix automatically into the orientation-rotation part in

accordance with one of the 15 templates. Formulae in columns

3, 4, 5 transform not only the unique location point s1, s2, s3 but

generally any point on the GE into the standard location point

x0, y0, z0.

5.2. Testing the orientation-location parts

The orientation-location part obtained by any derivation

routine can be converted into the standard form, provided this

part corresponds to (1). In the testing procedure, both

orientation and location are checked independently. One or

two direction indices are easily extracted from the orientation-

location parts. Denoting the expressions in (1) by GE(t) and

GE(t1, t2), [uvw] = GE(1) � GE(0) and [mno] = GE(1, 0) �

GE(0, 0), [pqr] = GE(0, 1) � GE(0, 0). The evaluated indices

should be consistent with C2 found in the NORM procedure.
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.
� Symmetry-operation symbols 451

research papers

Table 5
Composition of the standard orientation-location part from the direction indices vAxis or (vTrace1, vTrace2) and the coordinates of the standard location
point vLocat(x0, y0, z0).

Orientation type GE orientation and dummy variable(s) symbol(s) x0 y0 z0 Template of standard orientation-location part

0 – s1 s2 s3 x0, y0, z0

1 xvAxis 0 s2 s3 x, y0, z0

2 yvAxis s1 0 s3 x0, y, z0

3 zvAxis s1 s2 0 x0, y0, z
4 yvAxis s1 s2 � s3v/w 0 x0, vy + y0, wy
5 xvAxis s1 � s3u/w s2 0 ux + x0, y0, wx
6 xvAxis 0 s2 � s1v/u s3 ux, vx + y0, z0

7 xvAxis s1 � s3u/w s2 � s3v/w 0 ux + x0, vx+ y0, wx
8 yvTrace1 + zvTrace2 s1 0 0 x0, y, z
9 zvTrace1 + xvTrace2 0 s2 0 x, y0, z

10 xvTrace1 + yvTrace2 0 0 s3 x, y, z0

11 xvTrace1 + yvTrace2 0 s2 � s3q/r 0 x, qy + y0, ry
12 yvTrace1 + xvTrace2 s1 � s3p/r 0 0 px + xr, y, rx
13 zvTrace1 + xvTrace2 s1 � s2p/q 0 0 px + x0, qx, z
14 xvTrace1 + zvTrace2 s1 � s2m/n � s3 p/r 0 0 mx + pz + x0, nx, rz



In order to check or transform the location point s1, s2, s3

into the standard location point x0, y0, z0, the orientation type

of a geometric element must be known. For a symmetry plane,

the Miller-indices type is first derived from the pair of trace

indices by look-up in Table 1. Next, the orientation type may

be assigned to a given orientation-location part according to

Table 2. In the standard symmetry-operation symbol, the

location point s1, s2, s3 should be mapped onto itself by the

formulae selected from the columns 3, 4 and 5 of Table 5.

The following examples will illustrate the testing procedure.

Examples concerning the orientation:

(i) x + 1/4, y, �xx (S.G. 225, ITA83, 1995)! vTrace1 = (0, 1, 0),

vTrace2 = (1, 0,�1)!NORM(vTrace1) = [010], NORM(vTrace2) =

[�1101]! �xx + 1/4, y, x (ITA83, 2002).

(ii) �xx + 1/2, y, x (S.G. 225, ITA83, 1995)! vTrace1 = (0, 1, 0),

vTrace2 = (�1, 0, 1)!NORM(vTrace1) = [010], NORM(vTrace2) =

[�1101]! �xx + 1/2, y, x (ITA83, 2002).

(iii) �x, x � 1/6, x (S.G. not given, Grosse-Kunstleve, 1999)

! vAxis = (�11; 1; 1) ! Norm(vAxis) = [uvw] = [1�11�11] !

x, �xx � 1/6, �xx (in ITA83 style).

Examples concerning the location:

(iv) x, 2x � 1/2, z (S.G. 160, ITA83, 1995)! [mno] = [001],

[pqr] = [120] ! Orient. type = 13; s1, s2, s3 = 0,�1/2, 0 !

x0, y0, z0 = 1/4, 0, 0 and x + 1/4, 2x, z (ITA83, 2002).

(v) �1/6 � x, 1/3 � x, 1/6 + x (S.G. 205, Shmueli, 1984) !

[uvw] = [�11�111]! Orient. type = 7; s1, s2, s3 = �1/6, 1/3, 1/6!

x0, y0, z0 = 0, 1/2, 0 and �xx, �xx + 1/2, x (ITA83, 2002).

As far as the first three examples are concerned, only the

second item adheres to the C2 convention. It is worth recalling

that change in the sense of the rotation axis vector [see

example (iii)] involves the change in the sense of rotation and

finally changes the signs ‘+’ or ‘�’ found in the operation-type

specification.

6. Metric tensor

The metric properties of crystal space do not influence the

derivation of the operation symbols. However, a given symbol

can be obtained from different matrices (e.g. �xx; y; �zz in the

cubic system or �xx; �xxþ y; �zz in the hexagonal system ! 2

0, y, 0), and thus the reverse transformation3 would require

coordinate system data to be specified. By including the metric

tensor into the calculation system, the symmetry matrices and

operation symbols can be mutually transformed and finally it

is possible to compose symmetry operations given in the

geometric descriptions.

In all cited references, the metric properties were not used

for calculations. They are also not necessary in the presented

approach but allow for an elegant calculation of both Miller

indices and the indices of plane traces. We may use another

method based on the fact that the columns of the matrix I + W

define two linearly independent vectors parallel to the plane.

By their linear combination, the pair of trace indices can be

obtained. This way is algorithmically more cumbersome in

comparison with the described one.

The Miller indices (hkl) obtained from vAxis, by equations

(5) and (6) depend only on the structure of the metric tensor

and not on the particular numerical values of its elements.

Hence, for practical calculations, the default metric tensors

can be used (one predefined metric tensor per crystallographic

axis system). Evidently, in the non-standard space-group

description, the default metric tensor must be transformed in

accordance with the coordinate-axis system change.

7. Conclusions

Orientation of a geometric element is uniquely determined by

direction indices (for a rotation axis) or a pair of trace indices

(for a symmetry plane), provided the convention on the

positive direction in space is defined. Only for a plane in

general orientation where three different traces exist is the

pair selected according to the new convention.

The unique point on any geometric element closest to the

origin fixes this element in space. However, a standard

operation symbol represents the standard location point, viz

the intersection point of the corresponding geometric element

with the basal plane or with the system axis. Generally, there

are one, two or three such points; the ambiguity is avoided by

special conventions.

Classification of geometric element orientations allows us to

define the explicit equations for transformation of any point

on a geometric element into the standard one (used in ITA83).

Thus, the description of the fixing point does not depend on

the derivation algorithm.

The proposed approach for derivation of orientation and

location of geometric elements uses only simple vector/matrix

manipulations and no special procedures (like row echelon

form, Gauss reduction procedure, matrix inversion or axis

system rotation) are required. The method is algorithmically
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.
� Symmetry-operation symbols Acta Cryst. (2007). A63, 447–454

Figure 2
Two-dimensional model of space transformation on the projection plane,
orthogonal to the GE of symmetry operation (�66, wg+wL). The location
part wL shifts the rotation point from the origin O to the invariant point
O0. Rotations are defined with reference to line OX.

3 The general method of matrix form derivation from the symbols for
symmetry operations is not considered here.



simple, relatively compact and applicable to symmetry

operations described both in standard and in non-standard

settings of space groups.

APPENDIX A
Derivation of vector vShift for sixfold rotoinversion

Suppose that the matrix pair (W ,w) corresponds to the sixfold

rotoinversion �66þ with the proper rotation matrix R = �W and

location part wL. The original points on the projection plane in

the vicinity of O are plotted in the form of a disc with the solid

object in it (Fig. 2).

Projection of the transformed points maps this disc onto the

copy, rotated by an angle of 240� (360�/6 + 180�) and trans-

lated by wL. Three points, the origin O and ends of the vectors

wL, wL � RwL, form an equilateral triangle with O0 as its

centre. Rotation by an angle of �120� about this point gives

the same two-dimensional mappings. Trigonometric manipu-

lation yields vshift = 1/3(2wL � RwL) or 1/3(2wL + WwL).

Similar simple relations exist for other types of crystal-

lographic symmetry operations.

APPENDIX B
Glide reflection by a plane in a general orientation – a
comparative study

Consider the operation (0, 1/2, 1/2) + (46) of the group Fd�33c

(origin choice 1) described as the coordinate triplet

�zz + 1/2, y + 1/2, �xx + 1/2 or symbolized by b �xx + 1/2, y, x. When

referred to the primitive basis, the coordinate triplet takes the

following form:

xþ 1=2; �xx� y� zþ 1=2; zþ 1=2

)W ¼

1 0 0

�1 �1 �1

0 0 1

0
B@

1
CA; w ¼

1=2

1=2

1=2

0
B@

1
CA:

First the type of the transformed operation is identified by

calculating the trace and the determinant of W. In this case,

tr(W) = 1, det(W) = �1 and the operation corresponds to a

reflection or a glide reflection. Next the order of the matrix R

is determined (n = 2) and the translation vector w is decom-

posed into wg = (1/2,�1/2, 1/2) and wL = (0, 1, 0). Finally, the

orientation-location part is derived by two different methods.

B1. The classical approach

The orientation-location part follows from the equation

system

ðW;wLÞx ¼ x)

1 0 0

�1 �1 �1

0 0 1

0
@

1
A

x

y

z

0
@

1
Aþ

0

1

0

0
@

1
A ¼

x

y

z

0
@

1
A:

The possible solution, x = �2y � z + 1 with undetermined

y and z, can be rewritten as the coordinate triplet

�2y � z + 1, y, z. By changing the dummy variable from y to

�xx, the full symbol of the glide reflection takes the form

g(1/2,�1/2, 1/2) 2x � z + 1, �xx, z as intended by C6. Generally,

the above equations are easy to define but it is rather difficult,

like in this case, to formalize their standard solutions.

B2. The algorithmic approach

If one chooses the identity matrix I as the default metric

tensor M for the cubic system then the lattice transformation

F! P gives Mij = 0.25 for i 6¼ j and Mij = 0.5 for i = j. Any

scaled column of the matrix S = I �W leads to vAxis = [010].

This vector transformed to the reciprocal space

1=2 1=4 1=4

1=4 1=2 1=4

1=4 1=4 1=2

0
@

1
A

0

1

0

0
@

1
A ¼

1=4

1=2

1=4

0
@

1
A

and then normalized gives the Miller indices vPlane = (121).

Hence the corresponding traces are vTrace1 = [2�110] and vTrace2 =

[�1101] (orientation type = 14, see Table 1). According to Table

4, the relation vShift = wL/2 determines the point (0, 1
2, 0) on the

plane. The transformations x0 = s1 � s2m/n � s3 p/r, y0 = 0 and

z0 = 0 (the last row in Table 5) give the following solutions: x0 =

0 � 0.5 � 2/(�1) � 0(�1)/1 = 1, y0 = 0 and z0 = 0. Thus, the

unique location point (0, 1
2, 0) is converted into the standard

location point (1, 0, 0), i.e. the intersection of the symmetry

plane with the axis Ox.

Therefore the orientation-location part takes the form

x[2�110] + z[�1101] + 1, 0, 0 = 2x � z + 1, �xx, z proposed for

description of planes in general orientation. Finally, the

operation symbol is g(1/2,�1/2, 1/2) 2x � z + 1, �xx, z.

APPENDIX C
Examples for the derivation of the orientation-location
part

C1. Example 1. Glide reflection by a plane parallel to two
crystal axes

The operation (0, 1/2, 1/2) + (4) of the group C2/c (unique

axis c, cell choice 1) is described as the coordinate triplet

x + 1/2, y + 1/2, �zz + 1/2. The type of the operation is tr(W) = 1,

det(W) = �1 ) reflection or glide reflection, n = 2. For the

order n = 2, equation (2) gives the matrix S = (I + R). Recalling

that R = det(W)W, one can obtain

S ¼

0 0 0

0 0 0

0 0 2

0
@

1
A

with two zero columns. Hence, vAxis = NORM(S*3) = [001].

The metric tensor and its possible numerical representation

for the selected setting of the monoclinic group are the

following:

M ¼
a2 ab cos � 0

ab cos � b2 0

0 0 c2

0
@

1
A ¼

0:7 �0:2 0

�0:2 1 0

0 0 0:9

0
@

1
A:

According to equation (3), the normalized results of the

multiplication MvAxis determine the Miller indices of the
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symmetry plane (hkl) = (001). The orientation type 10

corresponds to the pair of traces vTrace1 = [100] and vTrace2 =

[010].

As was earlier explained, in the case of planes the splitting

formulae given in (8) should be interchanged. Hence the

location dependent part wL = Sw/2 = (0, 0, 1/2), and wg =

w � wL = (1/2, 1/2, 0). According to Table 4, the plane is fixed

by the point closest to the origin, vShift = wL/2 = (0, 0, 1/4). This

is also the standard location point, vLocat = vShift. Therefore,

the orientation-location part takes the form

x[100] + y[010] + (0, 0, 1/4) = x, y, 1
4, consistent with the

appropriate template in the last column of Table 5. The

derived result corresponds to the operation symbol

n(1/2, 1/2, 0) = x, y, 1
4 printed in ITA83.

C2. Example 2. Rotoinversion operation

The operation (0, 0, 0) + (18) of the group Fd�33 (origin

choice 1) has the following coordinate triplet representation:

�zz + 1/4, x + 1/4, y + 1/4. Its type is identified as threefold

rotoinversion, according to tr(W) = 0 and det(W) =�1. In this

case, the proper rotation matrix R = �W and its order n = 3.

From equation (2), the matrix S is given as the expression

I + R + R2:

S ¼

1 0 0

0 1 0

0 0 1

0
B@

1
CAþ

0 0 1

�1 0 0

0 �1 0

0
B@

1
CAþ

0 �1 0

0 0 �1

1 0 0

0
B@

1
CA

¼

1 �1 1

�1 1 �1

1 �1 1

0
B@

1
CA:

Any column of S after normalization uniquely characterizes

the axis direction vAxis = [uvw] = [�111�11] and the orientation type

7. wg = Sw/3 = (1/12,�1/12, 1/12) and wL = (1/6, 1/3, 1/6).

According to Table 4, the unique location point vShift(s1, s2, s3)

is determined by formula WwL = (�1/6, 1/6, 1/3). This point

can be converted into the standard location point by equations

found in Table 5, appropriate for the orientation type:

x0 ¼ s1 � s3u=w ¼ �1=6� ð1=3Þð�1Þ=ð�1Þ ¼ �1=2

y0 ¼ s2 � s3v=w ¼ 1=6� ð1=3Þð1Þ=ð�1Þ ¼ 1=2

z0 ¼ 0:

The orientation-location part is defined by the expression

x[�1, 1,�1] + (�1
2,

1
2, 0) and takes the form �xx � 1

2, x + 1
2, �xx.

The inversion point is calculated from equation (11):

vInv = vShift + wg/2 = (�1/6, 1/6, 1/3) + (1/24,�1/24, 1/24) =

(�1/8, 1/8, 3/8). Both results are consistent with the standard

operation symbol �33þ �xx � 1
2, x + 1

2, �xx; �1/8, 1/8, 3/8.

To make this example complete, the sense of the roto-

inversion is determined. There are two commonly used

procedures given by Fischer & Koch (1983) and Boisen &

Gibbs (1990). The latter method is more practical. It uses the

quantities vAxis = [uvw] and R. The sense of rotation is positive

if one of the following conditions is true: (i) v = w = 0 and

uR32 > 0 or (ii) R21w � R31v > 0. In our example, condition (ii)

is fulfilled: (�1)(�1) � (0)(1) = 1 > 0. The positive sense of

rotation is indicated by the superscript ‘+’ in the full operation

symbol.

The author wishes to thank the referees for reading and
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